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SUMMARY

Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into

plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA

are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas-exchange

measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2,

light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very

slightly depended upon JA and SA biosynthesis and signaling mutants, including dde2, sid2, coi1, jai1,

myc2 and npr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2, light

and ozone, ABA-triggered stomatal closure in npr1-1 was slightly accelerated compared with the wild type.

Stomatal reopening after ozone pulses was quicker in the coi1-16 mutant than in the wild type. In intact

Arabidopsis plants, spraying with methyl-JA led to only a modest reduction in stomatal conductance

80 min after treatment, whereas ABA and CO2 induced pronounced stomatal closure within minutes. We

could not document a reduction of stomatal conductance after spraying with SA. Coronatine-induced stom-

atal opening was initiated slowly after 1.5–2.0 h, and reached a maximum by 3 h after spraying intact

plants. Our results suggest that ABA, CO2 and light are major regulators of rapid guard cell signaling,

whereas JA and SA could play only minor roles in the whole-plant stomatal response to environmental cues

in Arabidopsis and Solanum lycopersicum (tomato).

Keywords: jasmonic acid, salicylic acid, abscisic acid, stomata, carbon dioxide, ozone, Arabidopsis thaliana,

Solanum lycopersicum.

INTRODUCTION

The colonization of dry land required vascular plants to

reduce excessive water loss from plant tissues. Stomatal

pores actively control transpiration as well as the uptake of

CO2 for photosynthesis in mesophyll cells. Guard cells

respond to many environmental and endogenous cues and

regulate ion channels and solute transporters in the guard

cell membranes (Assmann and Jegla, 2016; Kollist et al.,

2014; Sussmilch et al., 2019). The resulting reversible

changes in guard cell turgor and volume lead to stomatal

opening or closure, in accordance with light conditions,

intercellular CO2 concentration, air humidity and soil water

availability. Stomatal closure is also triggered by

pathogen-associated molecular patterns and elicitors to

prevent an invasion of pathogenic microorganisms into

plants (Melotto et al., 2006; Sawinski et al., 2013). As part

of a complex multicellular organism, stomata should be

coordinated with processes and events occurring in distant

plant organs and tissues. Indeed, guard cells are able to

recognize long-distance endogenous stimuli of different

nature, including hormones (Jia and Zhang, 2008; Marten

et al., 1991). Stomatal responsiveness to plant hormones
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has been known for a long time (Acharya and Assmann,

2009), although certain aspects of this regulation remain

unresolved, e.g. details of the interplay between hormones

in stomatal aperture regulation (Murata et al., 2015). Absci-

sic acid (ABA) efficiently induces rapid stomatal closure

and modulates stomatal regulation by environmental fac-

tors (Brandt et al., 2015; Chater et al., 2015; Hsu et al.,

2018; Merilo et al., 2013). In addition, other hormones,

including jasmonic acid (JA) and salicylic acid (SA), were

suggested to control stomatal aperture (Khokon et al.,

2010; Melotto et al., 2006; Munemasa et al., 2007). How-

ever, their potential to mediate stomatal regulation in

response to changes in the environment requires further

research.

Signaling events in guard cells during ABA-induced

stomatal closure have been well characterized (Kim et al.,

2010; Munemasa et al., 2015). The binding of ABA by

PYR1/PYL/RCAR receptors results in the inhibition of type-

2C protein phosphatases (PP2Cs) (Ma et al., 2009; Park

et al., 2009). This leads to the activation of the protein

kinase OST1 (Park et al., 2009; Takahashi et al., 2020;

Umezawa et al., 2009; Vlad et al., 2009), calcium-dependent

protein kinases (Brandt et al., 2012, 2015; Geiger et al.,

2010) and the receptor-like protein GHR1 (Hua et al., 2012;

Sierla et al., 2018), promoting anion currents through the

anion channel SLAC1 (Geiger et al., 2009; Lee et al., 2009;

Negi et al., 2008; Vahisalu et al., 2008). These events trigger

the efflux of anions, potassium and water from guard cells,

eventually leading to stomatal closure. Notably, ABA signal-

ing in guard cells is also involved in the regulation of stom-

atal closure triggered by elevated CO2, periods of darkness,

reduced air humidity (high vapor pressure deficit, VPD) and

ozone (Chater et al., 2015; Hsu et al., 2018; Merilo et al.,

2013, 2018; Sierla et al., 2018; Xue et al., 2011). Low air

humidity has been reported to activate ABA biosynthesis in

the guard cells or whole leaves (Bauer et al., 2013; McAdam

et al., 2016), whereas elevated CO2 concentrations do not

trigger rapid ABA accumulation in guard cells (Hsu et al.,

2018; Zhang et al., 2020). Furthermore, longer 24- and 48-h

exposures to elevated CO2 did not enhance ABA-induced

reporter gene expression in guard cells, in contrast to ABA

controls (Hsu et al., 2018).

Both JA and its derivatives regulate vegetative and

reproductive plant growth as well as defense responses to

abiotic stress and pathogen attack (Katsir, Chung, et al.,

2008; Song et al., 2014). Methyl jasmonate (MeJA) was

shown to trigger stomatal closure in epidermal peels by

the activation of slow-type anion channels through a pro-

cess that requires calcium channels, NO accumulation and

reactive oxygen species (ROS) production by NADPH oxi-

dases (RBOH D and F) (Hua et al., 2012; Munemasa et al.,

2007; Suhita et al., 2004; Yan et al., 2015). MeJA-triggered

stomatal closure involves the JA receptor CORONATINE

INSENSITIVE 1 (COI1), as the stomatal apertures were not

reduced by MeJA in the epidermal peels of the coi1 mutant

(Munemasa et al., 2007). However, other research groups

could not confirm the MeJA-triggered stomatal closure in

Arabidopsis (Montillet et al., 2013) or found that MeJA had

a significantly lower potency in promoting stomatal clo-

sure compared with ABA or 12-oxo-phytodienoic acid, the

precursor of JA (Savchenko et al., 2014). In contrast, yet

other research suggested that the pathogen-produced JA

mimetic coronatine (COR) opens stomata (Melotto et al.,

2006). In JA signaling, MeJA is converted to the biologi-

cally active isoleucine-JA conjugate that is bound by the

JA co-receptor comprising the JASMONATE ZIM DOMAIN

(JAZ) proteins and COI1 (Katsir, Schilmiller, et al., 2008).

Isoleucine-JA and COR that mimics isoleucine-JA promote

stomatal reopening and suppress the stomatal closure trig-

gered by pathogen-associated molecular patterns (Melotto

et al., 2006; Okada et al., 2009; Toum et al., 2016).

Recently, the quantification of metabolites in guard cells

during high CO2-induced stomata closure indicated a role

for JA in CO2 signaling. Furthermore, Arabidopsis JA-

signaling and -biosynthesis mutants displayed impaired

stomatal responses to elevated CO2 in mesophyll-free leaf

disks (Geng et al., 2016). The involvement of COI1-

dependent JA signaling in the regulation of stomatal aper-

tures and responses to the changing environment should

be further confirmed in intact plants.

Salicylic acid (SA) has been extensively studied in

plant–pathogen interactions, and its role in the regulation

of plant development and response to abiotic stress has

also been shown (Miura and Tada, 2014). SA is important

for stomatal immunity against pathogens based on

impaired pathogen-triggered stomatal closure in mutants

defective in SA biosynthesis and signaling (Melotto et al.,

2006; Zeng and He, 2010). The ability of SA to induce

stomatal closure was directly demonstrated in experi-

ments with SA-treated epidermal peels and detached

leaves (Khokon et al., 2010; Mori et al., 2001; Panchal

et al., 2016). Furthermore, SA over-accumulating mutants

display reduced stomatal aperture and elevated drought

tolerance (Miura et al., 2013). SA signaling in guard cells is

mediated through the SA receptor NPR1 (Ding et al., 2018;

Zeng and He, 2010) and components of ABA signaling,

including calcium-dependent protein kinases, but not

OST1 (Prodhan et al., 2018). The involvement of ethylene

biosynthesis and signaling in SA-induced stomatal closure

was recently suggested (Wang et al., 2020). Although ABA

and MeJA induce ROS production by RBOH D and F in

guard cells (Kwak et al., 2003; Suhita et al., 2004), ROS in

SA-triggered stomatal closure could be produced by cell

wall-bound peroxidases (Khokon et al., 2010; Mori et al.,

2001) and, as recently indicated, by RBOH D and F (Wang

et al., 2020). SA activates anion currents in guard cells

through the slow-type anion channel SLAC1 (Prodhan

et al., 2018).
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Although it has been demonstrated that ABA signaling

is involved in stomatal closure in response to many envi-

ronmental cues (Chater et al., 2015; Hsu et al., 2018; Merilo

et al., 2013), the roles of JA and SA signaling in stomatal

responsiveness to environmental stimuli have not been

studied thoroughly. Here we used a genetic approach in

Arabidopsis and Solanum lycopersicum (tomato) to

address the impacts of JA and SA biosynthesis and signal-

ing on stomatal function under changing environmental

conditions. As JA and SA display mutually antagonistic

interactions (B€urger and Chory, 2019), we additionally

studied double mutants with impaired responses to both

JA and SA to explore possible interactions between these

hormones in stomatal regulation. These experiments with

plants defective in both SA and JA signaling, carried out in

two independent laboratories, highlight that disruption of

JA and SA signaling does not considerably modulate

stomatal responsiveness to environmental factors. Further-

more, experiments with intact plants treated with increas-

ing concentrations of MeJA and SA indicate that these

hormones had a limited effect on stomatal conductance in

intact Arabidopsis plants, and thus the direct effect of

these hormones to induce stomatal closure is significantly

lower than that of ABA when these hormones are applied

exogenously.

RESULTS AND DISCUSSION

Plants defective in JA and SA signaling and biosynthesis

display stomatal responses to elevated CO2, darkness and

low air humidity

Numerous reports have demonstrated the role for ABA sig-

naling in the regulation of stomatal closure in response to

low air humidity, darkness and higher-than-ambient CO2

(Bauer et al., 2013; Chater et al., 2015; Hsu et al., 2018;

Merilo et al., 2013, 2018; Webb and Hetherington, 1997;

Yaaran et al., 2019; Zhang et al., 2020). MeJA and SA, hor-

mones crucial for plant defense responses, have also been

reported to affect stomatal aperture (Khokon et al., 2010;

Melotto et al., 2006; Munemasa et al., 2007; Suhita et al.,

2004; Yan et al., 2015); however, their impact on stomatal

responsiveness to environmental cues is less understood.

To address this question, we used plant lines with muta-

tions in JA and SA signaling and biosynthesis to monitor

their stomatal responses to high/low CO2, artificial dark-

ness period and low air humidity.

Throughout the gas-exchange experiments, steady-state

whole-plant stomatal conductance in the Arabidopsis and

tomato mutants studied did not vary dramatically,

although this trait was 20% reduced in the JA-deficient

dde2-2 mutant compared with wild type Col-0 (Figure 1).

When the intact rosettes of Arabidopsis plants were sub-

jected to elevated CO2, effective stomatal closure was

observed in wild-type Col-0 as well as in all SA- and JA-

related mutant plants (Figures 2a–d and S1). Elevated CO2

levels reduced stomatal conductance in plants with

impaired JA and SA biosynthesis (dde2-2 and sid2-1,

respectively) or in plants lacking the receptors to JA and

SA (coi1-16 and npr1-1, respectively), as well as in the

coi1-16 sid2-1 and coi1-16 npr1-1 double mutants that

combine the impairment of JA and SA signaling and

biosynthesis. The magnitudes and rates of stomatal clo-

sure induced by high levels of CO2 did not differ between

the Col-0 plants and the mutant lines (Figures 2g–j and

S1). Stomatal reopening in ambient CO2 was possibly very

slightly delayed in sid2-1, according to the reduced initial

rate of stomatal conductance recovery observed in some

experiments (Figure 2i). To confirm these results, we car-

ried out parallel experiments in the laboratory of JIS

(University of California, San Diego, UCSD) with another

experimental approach where we monitored the stomatal

conductance of individual Arabidopsis leaves upon

changes in CO2 concentration (Hu et al., 2015). The myc2-1

mutant with inactive MYC2 transcription factor regulating

diverse JA-dependent processes (Lorenzo et al., 2004) and

the coi1-30 mutant without active COI1 were studied. In

accordance with the whole-plant responses, intact leaves

of the myc2-1 and coi1-30 plants effectively closed and

opened their stomata under higher and lower than ambi-

ent CO2 concentrations (Figures 2e,f,k,l and S1). The initial

rate of stomatal opening in coi1-30 was potentially very

slightly enhanced compared with Col-0 in some of the

experiments (Figure 1k). An intact responsiveness to CO2

was observed in the top leaves of the tomato jai1-1

mutant, defective in the JA receptor COI1 homolog (Li

et al., 2004). This mutant did not differ from the corre-

sponding wild-type line in the experiments with high and

low CO2 treatments (Figures 3 and S2). Thus, the results

obtained by two independent laboratories using different

experimental set-ups demonstrate that JA and SA do not

play a significant role in high-CO2-induced stomatal clo-

sure. Stomatal opening in response to low CO2 and the

recovery of stomatal conductance after elevated CO2 levels

might be only very slightly modulated by JA and SA sig-

naling in Arabidopsis.

A recent study of the guard cell metabolome in Brassica

napus demonstrated the activation of the JA biosynthesis

pathway by elevated CO2 (Geng et al., 2016). This sug-

gested that JA biosynthesis might play a role in CO2-

triggered stomatal closure, and further stomatal aperture

assays carried out with epidermal peels showed reduced

stomatal CO2 sensitivity in the Arabidopsis JA-insensitive

mutants (coi1, jar1 and jin1/myc2) (Geng et al., 2016). It is

possible that the CO2 insensitivity phenotype that was

observed by Geng et al. in the coi1, jar1 and jin1/myc2

mutants could be related to the disruption of the contacts

between stomata and mesophyll cells in epidermal peels.

Involvement of mesophyll-driven signals in the CO2-
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induced regulation of stomatal apertures was suggested

by a number of studies, although the nature of these sig-

nals remains elusive (Lawson et al., 2014). Apoplastic

malate promotes high CO2-triggered stomatal closure by

enhancement of the activity of the malate-sensitive R-type

anion channel QUAC1 (Hedrich and Marten, 1993; Lee

et al., 2008; Meyer et al., 2010). Sucrose and glucose in the

apoplastic space provide another link between mesophyll

and guard cells, connecting photosynthesis with the regu-

lation of stomatal apertures (Fl€utsch et al., 2020; Lawson

et al., 2014; Santelia and Lawson, 2016). Rates of high-CO2-

triggered stomatal closure can be modulated by a balance

between foliar sucrose and malate in ferns and angios-

perms (Lima et al., 2019).

Darkness-induced stomatal closure recruits several inde-

pendent signaling pathways in guard cells. The lack of CO2

assimilation by photosynthesis during darkness and respi-

ration leads to an increase of intercellular CO2 that con-

tributes to darkness-induced stomatal closure through the

activation of CO2 signaling in guard cells (Roelfsema et al.,

2002). Furthermore, the absence of blue light prevents acti-

vation of phototropins and plasma-membrane H+-ATPases

in guard cell membranes (Shimazaki et al., 2007).

Darkness-induced stomatal closure depends on ABA sig-

naling, as it is partially impaired in the mutants lacking six

ABA receptors or OST1 protein kinase (Merilo et al., 2013).

The receptor-like protein GHR1 that mediates ABA and CO2

signaling in guard cells is also important for stomatal clo-

sure in darkness (Sierla et al., 2018). In contrast, the

mutants with interrupted JA and SA biosynthesis and sig-

naling (coi1-16, dde2-2, npr1-1 and sid2-1) as well as

mutants combining these defects (coi1-16 sid2-1 and coi1-

16 npr1-1) demonstrated unaffected stomatal closure dur-

ing the artificially imposed periods of darkness (Figures S3

and S4). Similar to the gas-exchange experiments with

changing CO2, the sid2-1 mutant demonstrated slightly

slower recovery of stomatal conductance upon re-

illumination than the wild-type plants (Figure S4). These

experiments indicate that JA and SA are not involved in

stomatal closure triggered by darkness, whereas the recov-

ery of stomatal conductance after darkness can depend on

SA biosynthesis.

Both ABA and basal ABA concentrations in guard cells

have a paramount role in determining the overall stomatal

conductance in a plant (Gonzalez-Guzman et al., 2012;

Merilo et al., 2013, 2018). However, ABA accumulation in

guard cells during rapid stomatal closure induced by

abrupt changes in VPD, i.e. reduced air humidity, is still

under debate because of conflicting results, probably asso-

ciated with the experimental set-ups and species studied.

Some reports show that high-VPD-induced stomatal clo-

sure is controlled by ABA biosynthesis and signaling

(Bauer et al., 2013; McAdam et al., 2016; Merilo et al.,

2013; Xie et al., 2006). However, a recent study demon-

strated that the impaired ABA biosynthesis did not affect

high-VPD-induced stomatal closure, whereas OST1, one of

the central regulators of the ABA response in guard cells,

was of high importance for stomatal closure in response to

reduced air humidity (Merilo et al., 2018; Xie et al., 2006).

Apparently, the rapid stomatal closure triggered by high

VPD is controlled by OST1, which might be activated inde-

pendently of ABA signaling by Raf-like kinases (Katsuta

et al., 2020; Soma et al., 2020). The long-term stomatal

adaptation to dry air involves the modulation of ABA

levels, further decreasing stomatal conductance (Yaaran

et al., 2019). In our experiments, single and double JA and

SA biosynthesis and signaling mutant plants showed pro-

nounced responses to the increase in VPD (Figure S5). The

sid2-1 mutant demonstrated a slightly lower magnitude of

stomatal closure 15 and 60 min after the increase in VPD

than the wild-type Col-0 plants (Figure S6). Our results do

not exclude that JA/SA-activated signaling can affect
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Figure 1. Steady-state stomatal conductance in the jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling mutants studied.

Whole-plant stomatal conductance was monitored in Arabidopsis plants at the age of 3–4 weeks (a, b). Stomatal conductance was also measured in individual

leaves of intact 4–5-weeks-old Arabidopsis plants (c, d) and in top leaves of 3–4-weeks-old Solanum lycopersicum (tomato) plants (e). The boxes extend from

the 25th to the 75th percentiles, with the horizontal lines plotted at the median values. The individual data points are shown as dots whereas the whiskers are

the minimum and maximum values (n = 4–10). Asterisks show significant differences between mutants and the wild type (one-way ANOVA followed by

Dunnett’s post hoc test; P < 0.05).
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Figure 2. CO2-triggered regulation of stomatal conductance in Arabidopsis jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling mutants.

Time courses for stomatal conductance in the mutants and corresponding wild-type Col-0 plants studied are shown (average � SE). Stomatal conductance is

shown in relative values calculated from the data presented in Figure S1. At time 0, elevated CO2 (approx. 800 µl L�1) was applied for 60 min, followed by ambi-

ent CO2 (approx. 420 µl L�1) (a–d) or reduced CO2 (approx. 100 µl L�1) (e, f). Experiments with intact plants included the single (a–c) and double (d) mutants with

impaired JA and SA biosynthesis and signaling (n = 6–10). Stomatal responses to elevated and reduced CO2 levels were studied in the leaves of the coi1-30 (e)
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Col-0 (one-way ANOVA, followed by Dunnett’s post hoc test; P < 0.05).
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stomatal opening under elevated relative air humidity

(>95%), as indicated by previous studies (Panchal et al.,

2016; Panchal and Melotto, 2017). Stomatal opening under

these conditions is associated with the activation of JA

signaling and the simultaneous downregulation of SA-

responsive genes in guard cells (Panchal et al., 2016; Pan-

chal and Melotto, 2017).

In summary, our results indicate that the SA and JA

biosynthesis and signaling mutants maintain stomatal

responsiveness to CO2 levels, light intensity and low air

humidity. At the same time, the rates and magnitudes of

stomatal movements induced by these stimuli can be

partly modulated by JA and SA.

JA and SA biosynthesis and signaling have a minor

influence on ABA-induced stomatal closure

As plant hormones frequently interact in physiological

processes, we aimed to study whether JA and SA would

influence ABA-induced stomatal closure in intact plants.

We sprayed the rosettes of wild-type plants with 5 µM
ABA, which induced a fast and robust reduction in stom-

atal conductance (Figures 4 and S7). Stomata in leaves of

the coi1-16, dde2-2, npr1-1, sid2-1, coi1-16 sid2-1 and coi1-

16 npr1-1 mutants displayed rapid stomatal closure in

response to 5 µM ABA, which was comparable with wild-

type plants in magnitude (Figures 4 and S7). Interestingly,

the stomata in ABA-treated dde2-2 plants partially reo-

pened by the end of the experiments and the reduction of

stomatal conductance was lower in dde2-2 than that in the

wild-type plants 64 min after spraying with ABA (Fig-

ure 4e). The JA biosynthesis in dde2-2 is interrupted

before the formation of 12-oxo-phytodienoic acid that is

able to induce stomatal closure by itself, most efficiently in

combination with ABA (Montillet et al., 2013; Savchenko

et al., 2014). Seemingly, the duration of ABA effect on

stomata depends on the level of 12-oxo-phytodienoic acid,

as the coi1-16 mutant demonstrated the same stomatal

responsiveness to ABA as the wild-type plants.

The antagonistic interaction between ABA and SA sig-

naling has been suggested in studies of systemic acquired

resistance (Ton et al., 2009; Yasuda et al., 2008). We found

that the lack of NPR1 in the npr1-1 mutant resulted in faster

St
om

at
al

 c
on

du
ct

an
ce

  (
re

la
tiv

e 
un

its
)

390 740(a)

0.3

0.5

0.7

0.9

1.1

1.3

-25 0 25 50 75

Castlemart

jai1-1

(b) 390 90

0.7

1.2

1.7

2.2

-25 0 25 50 75

Castlemart

jai 1-1

Time (min)

CO2 concentration (μL L-1)

C
as

tle
m

ar
t

ja
i1

-1

In
iti

al
 c

lo
su

re
 a

nd
 o

pe
ni

ng
 ra

te
(m

m
ol

 m
-2

 s
-1

 m
in

-1
)

Ch
an

ge
 in

 s
to

m
at

al
 c

on
du

ct
an

ce
(m

m
ol

 m
-2

 s
-1

)

(c) (d)

C
as

tle
m

ar
t

ja
i1

-1

closure
opening

80 min closure
88 min opening

-200

-100

0

100

200

300

-10

-5

0

5
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and the corresponding wild type (Castlemart).

The treatments were started at time 0. Time courses for stomatal conduc-

tance are shown (average � SE). Stomatal conductance is shown in relative

values calculated from the data presented in Figure S2 (n = 5 for jai1-1;

n = 7 for Castlemart). (c) Changes in stomatal conductance in leaves of jai1-

1 and Castlemart at 80 and 88 min with elevated and reduced CO2, respec-

tively. (d) The rates of stomatal closure and stomatal opening in elevated

and reduced CO2 were calculated as linear slopes of the stomatal conduc-

tance curves within 16 and 56 min after application of elevated and reduced

CO2, respectively. The boxes extend from the 25th to the 75th percentiles,

with the horizontal lines plotted at the median values. The individual data

points are shown as dots, whereas the whiskers are the minimum and max-

imum values. No statistically significant differences were detected between

mutant lines and Castlemart with one-way ANOVA (P < 0.05).
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ABA-induced stomatal closure than that in the wild-type

plants, although the magnitude of the reduction in stom-

atal conductance did not differ between npr1-1 and Col-0

at 28 and 64 min after ABA spraying (Figures 4f and S7e).

The sid2-1 mutant displayed the same changes in stomatal

conductance as the wild-type plants (Figure S7f,i),

probably through a residual level of SA in this mutant (Wil-

dermuth et al., 2001). Thus, our results suggest that NPR1-

dependent SA signaling influences ABA-triggered stomatal

closure.

Previous research indicated that stomatal closure

induced by MeJA and SA depends on both ABA basal

levels and ABA signaling. An impaired stomatal respon-

siveness to MeJA and SA was observed in ABA-deficient

mutants (Hossain et al., 2011; Zeng and He, 2010). Studies

of ABA-insensitive mutants showed that MeJA-induced

stomatal closure involves ABI1, ABI2 and OST1, and does

not require PYR1, PYL1, PYL2 and PYL4 ABA receptors

(Hossain et al., 2011; Munemasa et al., 2007; Yin et al.,

2016). A recent study using a real-time SnRK2/OST1 pro-

tein kinase F€orster resonance energy transfer (FRET) repor-

ter showed strong SnRK2/OST1 activation by ABA, but no

activation by MeJA or elevated CO2 (Zhang et al., 2020).

SA was shown to trigger the phosphorylation of SLAC1 in

guard cells via calcium-dependent protein kinases, but not

by OST1 (Prodhan et al., 2018). This mechanism is possibly

involved in the regulation of stomatal closure by patho-

gens. The dependence of ABA-induced stomatal closure

kinetics on JA and SA should be studied additionally.

Disruption of SA and JA biosynthesis and signaling does

not influence ozone-triggered stomatal closure

As an air pollutant, ozone damages plants and can lead to

substantial losses in crop yield (Ainsworth et al., 2012). As
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induced stomatal closure.

Plants 3–4 weeks old were sprayed with 5 µM ABA at time 0 (marked with the arrows). Single mutants with impaired JA (a) and SA (b, c) signaling and biosyn-

thesis, as well as double mutants (d), were studied. Time courses for stomatal conductance in the mutants and the corresponding wild-type Col-0 plants studied

are shown (average � SE, n = 6–10). Stomatal conductance is shown in relative values calculated from the data presented in Figure S7. (e) Reduction of stom-

atal conductance at 28 and 64 min after ABA spraying. (f) The initial rates of ABA-induced stomatal closure in npr1-1 and Col-0 were calculated as slopes of the

stomatal conductance curve within 12 min after spraying with ABA. The boxes extend from the 25th to the 75th percentiles, with the horizontal lines plotted at
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ozone enters plants through stomata and degrades to ROS

in the apoplast, ozone exposure became instrumental in

studies of apoplastic ROS signaling in relation to cell death

and stomatal functioning (Kangasj€arvi et al., 2005; Kollist

et al., 2007; Vahisalu et al., 2010; Xu et al., 2015). Impor-

tantly, a short-term ozone pulse induces stomatal closure

through the activation of ROS-dependent signaling path-

ways in guard cells (Kollist et al., 2007; Vahisalu et al.,

2010). As the apoplastic ROS formed from ozone resem-

bles the ROS burst during pathogen infection (Vaahtera

et al., 2013), we studied whether stomatal responsiveness

to apoplastic ROS/ozone depends on JA and SA levels or

signaling. The JA and SA biosynthesis and signaling

mutants were exposed to a 3-min pulse of approx.

470 nl L�1 ozone, and changes in stomatal conductance

were monitored. All of the mutants analyzed closed their

stomata effectively after the 3-min ozone pulses, similar to

the wild type (Figures 5 and S8). The coi1-16 sid2-1 double

mutant showed a slightly reduced magnitude of ozone-

induced stomatal closure (Figure S8). Although the recov-

ery of stomatal conductance after ozone-induced stomatal

closure has not been studied completely (Moldau et al.,

2011), our data indicate that the coi1-16 mutant plants may

show accelerated stomatal reopening (Figure 5h). Addi-

tionally, the coi1-16 npr1-1 double mutant demonstrated

an enhanced rate of stomatal conductance recovery com-

pared with Col-0 (Figures 5l and S8).

In general, although SA and JA can induce apoplastic

ROS formation (Khokon et al., 2010; Mori et al., 2001;

Suhita et al., 2004), stomatal responsiveness to apoplastic

ROS induced by ozone does not depend on SA and JA

levels or signaling. However, the recovery of stomatal con-

ductance after a brief pulse of ozone might depend on

COI1.

MeJA and SA are considerably less effective in inducing

stomatal closure than ABA

Stomatal closure induced by MeJA and SA was reported in

several studies, typically by measuring stomatal apertures

in epidermal peels or detached leaves (Khokon et al., 2010;

Melotto et al., 2006; Munemasa et al., 2007; Suhita et al.,

2004; Yan et al., 2015). Here, we compared stomatal

responses to MeJA and SA with that to ABA in intact

plants. We sprayed whole Arabidopsis plants with ABA,

MeJA or SA and monitored whole-plant stomatal conduc-

tance for 23 h (Figures 6a–c and S9). Stomatal conduc-

tance in the mock-treated plants was slightly increased in

response to sprays and then gradually reduced before the

night-time, according to the diurnal stomatal rhythm

(Sierla et al., 2018). As expected, spraying plants with

5 µM ABA resulted in rapid, pronounced and prolonged

stomatal closure (Figures 6a and S9) that was still clearly

detectable after 23 h (Figure S9). At the same time, MeJA

and SA in concentrations up to 200 and 1000 µM,

respectively, did not induce a prominent reduction of

stomatal conductance, which would be comparable with

that in plants treated with 5 µM ABA (Figures 6b,c and Fig-

ure S9). However, MeJA suppressed the stomatal opening

induced by brief leaf wetting/high humidity in the cham-

bers (Panchal et al., 2016; Yokoyama et al., 2019), and fur-

ther induced detectable slight stomatal closure. In 80 min

after spraying, stomatal conductance in MeJA-treated

plants was significantly reduced by 5–10% of the initial val-

ues (Figure S9). Stomatal conductance in SA-treated plants

was indistinguishable from that in the corresponding mock

plants. These results demonstrate the ability of MeJA to

suppress stomatal opening and to induce detectable stom-

atal closure in the sprayed intact Arabidopsis plants,

although this response is not comparable with ABA-

induced stomatal closing. Although a role for JA in stom-

atal opening requires further research, a recent publication

demonstrates that JA signaling suppresses high

temperature-triggered stomatal opening in tomato plants

damaged by insects or mechanical wounding (Havko et al.,

2020).

Both MeJA and SA can enter guard cells via diffusion

across plasma membranes (Maruri-L�opez et al., 2019; Seo

et al., 2001) and via specific transporters, which should still

be identified in guard cells. To confirm that the hormones

penetrated the sprayed plants and guard cells, we mea-

sured transcript levels of hormone-responsive marker

genes (Figure 6d–g). Leaves of MeJA- and SA-treated

plants demonstrated an accumulation of JAZ1 and

WRKY38 transcripts (Figure 6d,e), respectively, as it has

been shown for comparable plant treatments in other stud-

ies (Chung et al., 2008; Kim et al., 2008). Spraying with

5 µM ABA similarly induced elevated ABA-responsive HAI1

transcripts (Figure S9). The uptake of the sprayed hor-

mones by guard cells was confirmed by the upregula-

tion of JAZ1 and WRKY38 in guard cell-enriched epidermal

fractions collected from JA- and SA-treated plants, respec-

tively (Figure 6f,g). In another study, concentrations of

JA and SA were estimated on the levels of approxi-

mately 9 and 115 pg mg�1 fresh weight, respectively (cor-

responding to approx. 40 pmol g�1 JA and approx.

0.83 nmol g�1 SA) in guard-cell-enriched epidermal peels

collected from Arabidopsis plants (David et al., 2020). The

quantification of JA and SA in Arabidopsis leaves revealed

similar ranges of the hormones (Forcat et al., 2008; Pan

et al., 2010; Trapp et al., 2014). Thus, spraying with MeJA

and SA solutions in the concentrations used in this study

led to a significant increase of these hormones in guard

cells and were efficient regarding the induction of biologi-

cal effects in guard cells.

As a complementary method to study the role of MeJA

and SA in the modulation of stomatal apertures, we col-

lected epidermal peels from Arabidopsis plants and incu-

bated them with ABA, MeJA or SA for 3 h. The application
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Figure 5. Ozone-induced stomatal closure in Arabidopsis mutants with disrupted jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling.

Plants at the age of 3–4 weeks were exposed to a pulse of approx. 470 nl L�1 ozone for 3 min at time 0. Single mutants with impaired JA (a, b) and SA (c, d) sig-

naling and biosynthesis, as well as double mutants (e, f), were studied. Time courses for stomatal conductance in the mutants and the corresponding wild-type

Col-0 plants studied are shown (average � SE, n = 5–10). Stomatal conductance is shown in relative values calculated from the data presented in Figure S8.

(g–j) The rates of stomatal conductance recovery were calculated as the linear slopes of the stomatal conductance curve within 23–35 min after ozone exposure.

The boxes extend from the 25th to the 75th percentiles, with the horizontal lines plotted at the median values. The individual data points are shown as dots,

whereas the whiskers are the minimum and maximum values. Asterisks show significant differences between mutant lines and the wild type (one-way ANOVA,

followed by Dunnett’s post hoc test; P < 0.05).
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of 400 and 1000 µM MeJA induced 15 and 26% stomatal

closure in epidermal peels, respectively. In these experi-

ments, SA induced noticeable stomatal closure only when

applied at higher concentrations (1000 µM; Figure 6h). In

comparison, 5 µM ABA triggered a 2.7-fold reduction in

stomatal aperture.

Taken together, our gas-exchange results and direct

stomatal aperture assays indicate that stomata are much

more sensitive to ABA than to MeJA or SA. It is also possi-

ble that a long-term accumulation of MeJA or SA in guard

cells is required to induce stomatal closure, whereas stom-

ata respond to ABA almost immediately (Figures 4, 6a and

S7).

Coronatine induces stomatal opening in intact Arabidopsis

plants

Like the endogenous jasmonates, the phytotoxin coro-

natine (COR) activates JA signaling through COI1 in plants

(Katsir, Schilmiller, et al., 2008). COR has been reported to

trigger stomatal opening and suppress stomatal closure to
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Figure 6. Effects of abscisic acid (ABA), methyl jasmonate (MeJA) and salicylic acid (SA) treatments on stomatal functioning in Arabidopsis.

Arabidopsis plants (Col-0) at the age of 3–4 weeks were sprayed with ABA (a), MeJA (b) or SA (c), in various concentrations. Time courses are shown for stom-

atal conductance (average � SE, n = 4 for ABA, n = 16–24 for MeJA and SA). Relative expression of JAZ1 and WRKY38 after MeJA (d) and SA (e) treatments,

respectively, in plants analyzed in (b) and (c) (n = 3). The same transcripts were quantified in guard-cell-enriched epidermal fractions (GC-enriched) collected

from MeJA- and SA-treated plants (n = 4) (f and g). Asterisks show significant differences between mock and hormonal treatments (one-way ANOVA, followed

by Dunnett’s post hoc test; P < 0.05). (h) ABA demonstrates a significantly higher potency to induce stomatal closure in stomatal assays than MeJA and SA.

Epidermal peels were collected from plants at age of 4–5 weeks and incubated in stomatal opening buffer supplemented with ethanol (mock), ABA, MeJA or
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promote pathogen invasion (Toum et al., 2016). As MeJA

showed only a weak effect on stomata in intact plants, we

decided to investigate whether COR, also acting through

COI1, would enhance stomatal conductance under the

same conditions. Intact Arabidopsis plants were sprayed

with 10 µM COR and stomatal conductance was monitored

for 6 h. As observed in other experiments with plant spray-

ing, a transient increase in stomatal conductance was

observed for approximately 90 min after both mock and

COR spraying. Although stomatal conductance was not

altered after a single spray with 10 µM COR in a prelimi-

nary experiment, four consecutive rounds of sprays with

10 µM COR, which provided a long-term treatment for

guard cells, resulted in a delayed but significantly

increased stomatal conductance compared with mock

treatments, which were performed in parallel (Figures 7

and S10). Stomatal opening in COR-treated plants started

approximately 110 min after spraying and reached maxi-

mal values 3 h after spraying before the stomata closed

again. The mock-treated plants displayed a continuous

decrease in stomatal conductance, attributed to the diurnal

stomatal rhythm.

Methyl jasmonate (MeJA) and COR have opposing roles

in modulating the stomatal response. MeJA induces stom-

atal closure, as demonstrated in numerous studies and

also in this work by using different experimental

approaches (Hua et al., 2012; Munemasa et al., 2007;

Suhita et al., 2004; Figures 6b and S9). At the same time,

COR triggers stomatal opening even in low concentrations

delivered by spraying plants (Figure 7). The different

effects of COR and MeJA on stomatal functioning could be

explained by alternative signaling pathways activated by

these substances in addition to the canonical COI1–JAZ1
pathway (Devoto et al., 2005; Liu et al., 2009; Zhou et al.,

2015). Thus, COR-induced stomatal opening can be medi-

ated by RPM1-INTERACTING PROTEIN 4, which activates

AHA1 and AHA2 plasma membrane H+-ATPases (Liu et al.,

2009).

CONCLUSION

The gas-exchange experiments with JA and SA biosynthe-

sis and signaling mutants showed that JA and SA did not

directly mediate stomatal responses to CO2, light–darkness
transitions, low air humidity, ABA and ozone in intact

plants (Figures 2–5 and S1–S8). Only small differences

between the wild-type plants and the mutants studied were

observed in the rates of stomatal opening and closing. JA

signaling tends to restrict stomatal opening as the lack of

COI1 accelerated the recovery of stomatal conductance

after ozone pulses and very slightly enhanced the low-CO2-

induced stomatal opening (Figures 2k and 5h). Further-

more, the MeJA-treated plants did not exhibit the stomatal

opening triggered by high humidity (Figure 6b). At the

same time, ABA-induced stomatal closure was accelerated

in the SA-insensitive npr1-1 mutants, compared with the

wild type. Although the influence of JA and SA on stom-

atal responsiveness to environmental stimuli was weak,

the modulation of stomatal opening and closing rates by

these hormones deserves further attention.

Although stomata respond rapidly and robustly to ABA,

CO2, darkness and ozone, stomatal closure triggered by

MeJA and SA is substantially less efficient when the hor-

mones were sprayed on intact plants (Figures 6a–c and

S9). Although the uptake kinetics by guard cells for ABA,
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(average � SE, n = 4–5). (b) The same data as (a), expressed as relative values to time 0.
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MeJA and SA might be significantly different, all of these

hormones were delivered to guard cells by the same spray-

ing method (Figures 6d–g and S9). The time-resolved anal-

ysis of whole-plant stomatal conductance demonstrates

that stomata in intact plants respond to MeJA much slower

and in a much smaller extent compared with ABA

(Figure 6a,b). Furthermore, the biological effect of COR on

guard cells develops with a lag, as only a partial stomatal

opening was initiated at 1.5–2.0 h and reached the maxi-

mum 3 h after spraying with COR (Figure 7), in contrast to

the rapid stomatal opening induced by low CO2 and light.

As spraying with SA did not decrease stomatal conduc-

tance, SA-induced stomatal closure apparently requires

high concentrations and/or prolonged SA treatments,

which can be achieved by soaking epidermal peels in SA

solutions (Figure 6h). Our results highlight the different

roles of the MeJA and SA defense hormones from that of

ABA in the regulation of stomatal movement. ABA is a cen-

tral regulator of many aspects in stomatal function, includ-

ing stomatal responsiveness to environmental cues

(Chater et al., 2015; Hsu et al., 2018; Merilo et al., 2013;

Xue et al., 2011). JA and SA, which regulate plant defenses

against biotic stresses, induce partial stomatal closure, as

previously reported under specific conditions (e.g. herbi-

vore or pathogen attack), and might modulate rates of

stomatal reactions to some environmental cues. Further

investigations of stomatal responses under diverse condi-

tions could best be accomplished using gas-exchange

analyses of whole intact plants and in intact leaves, which

enables time-dependent kinetic analysis.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis plants were grown in soil containing 2:1 (v:v) peat:
vermiculite. Arabidopsis plants for whole-plant measurements
of stomatal conductance were cultivated in growth chambers (AR-
66LX and AR-22L; Percival Scientific, https://www.percival-scientif
ic.com) with a 12-h photoperiod, 23°C day/18°C night,
150 µmol m�2 sec�1 light and 70% relative humidity. Soil mois-
ture was kept at approximately 80% of maximum water capacity.
The plants for stomatal aperture assays were grown in growth
rooms under the same conditions. For gas-exchange experiments,
plants were grown through a hole in a glass plate covering the
growth pot as described by Kollist et al. (2007). The Arabidopsis
plants for studies with individual leaves were grown on soil in a
Conviron E7/2 plant growth chamber (Conviron, https://www.c
onviron.com) with a 12-h photoperiod, 21°C day/19°C night, rela-
tive humidity of 70–80% and photosynthetic photon flux density of
approximately 150 lmol m�2 sec�1. The plants were watered
twice per week.

The JA and SA mutants in this study have been well character-
ized before. The following Arabidopsis mutants were used: dde2-2
(also known as aos, allene oxide synthase) and sid2-1, which fail
to synthesize JA and SA, respectively (Malek et al., 2002; Wilder-
muth et al., 2001); coi1-16 and coi1-30, defective in the JA receptor
COI1 (Ellis et al., 2002; Xu et al., 2015); and npr1-1, lacking the SA

receptor (Ding et al., 2018). Additionally, we used the myc2-1 (also
known as jin1) mutant with inactive MYC2 transcription factor reg-
ulating diverse JA-dependent processes (Lorenzo et al., 2004). To
acquire more information about the interactions of defense hor-
mones in stomatal regulation, we used the double mutants coi1-
16 sid2-1 and coi1-16 npr1-1 (Xu et al., 2015). All Arabidopsis
mutants were in the Col-0 genetic background and their homozy-
gosity was verified routinely.

The tomato jai1-1 mutant (Li et al., 2004; the jai1 mutant is
equivalent to the coi1 mutant in Arabidopsis) and the correspond-
ing wild-type line (cultivar Castlemart) were germinated on wet fil-
ter paper in darkness and were transferred into the soil at the age
of 7–8 days. Plants were grown in growth chambers with a 12-h
photoperiod, 23°C day/18°C night, 200 µmol m�2 sec�1 light and
70% relative humidity. As the jai1-1 mutation impairs seed produc-
tion (Li et al., 2004), homozygous jai1-1 plants were selected from
the progeny of heterozygous jai1-1 plants (Bosch et al., 2014). At
the age of 14–16 days, cotyledons from the tomato plants were
collected and used for DNA isolation. The plants were genotyped
by using pairs of primers to the genomic DNA with and without
the deletion in the tomato COI1 analog (Table S1). The homozy-
gous jai1-1 mutants were employed for the gas-exchange experi-
ments at the age of 3–4 weeks.

Gas-exchange experiments

The whole-plant stomatal conductance in the single (coi1-16, sid2-1,
dde2-2 and npr1-1) and double (coi1-16 sid2-1 and coi1-16 npr1-
1) Arabidopsis mutants was measured in the eight-chamber gas-
exchange devices, which have been described before (Kollist
et al., 2007). Arabidopsis plants at the age of 3–4 weeks were
inserted into the device and incubated for about 1 h for the stabi-
lization of stomatal conductance. The standard conditions in the
chambers were as follows: ambient CO2 (423.9 � 4.8 µl L�1, here
and thereafter average � SD), 150 µmol m�2 sec�1 light,
69.8 � 2.2% relative air humidity and 24.4 � 0.15°C. In order to
characterize the stomatal responses, the following stimuli pro-
moting stomatal closure were applied: elevated CO2 (798.8 � 11.5
µl L�1 CO2); light-to-dark transition; spraying with 5 µM ABA;
a reduction of relative air humidity (from 68.9 � 1.7 to
27.5 � 4.85%, increasing the VPD from 0.97 � 0.05 to
2.22 � 0.16 kPa); and a 3-min pulse of 467.3 � 80.7 nl L�1 ozone.
For ABA treatments, the plants were sprayed with 5 µM ABA (in
0.012% aqueous Silwet L-77 solution) three times from different
sides. Stomatal conductance in the JA and SA mutants and the
wild-type plants was monitored for 1 h. In some experiments, the
recovery of stomatal conductance after the treatments was
recorded.

Stomatal responses to ABA, COR, MeJA and SA were also stud-
ied in the eight-chamber gas-exchange devices. The applied solu-
tions of these hormones were prepared from 10 or 100 mM stock
solutions (in 96% ethanol for ABA, MeJA and SA; in 100% metha-
nol for COR) and were supplemented with 0.012% aqueous Silwet
L-77. The working solutions were used during a single day. The
Arabidopsis Col-0 plants at the age of 3–4 weeks were stabilized
for 1 h under standard conditions in the eight-chamber gas-
exchange device. For hormonal treatments or the mock, the plants
were taken from the chambers and sprayed three times from dif-
ferent sides. In some experiments, the sprays with COR were
repeated four times with 12-min intervals. Then, the plants were
put back into the chamber and stomatal conductance was
recorded every 4 or 16 min. For the mock, a solution with the cor-
responding concentrations of the solvent and Silwet L-77 were
used to spray plants in parallel with the treatments with ABA,
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COR, MeJA and SA. All experiments were started at the same time
and followed the day/night regime of the plants, if needed.

Photographs of plants were taken before the experiments and
leaf areas were calculated using IMAGEJ 1.37 (https://imagej.nih.
gov/ij). Stomatal conductance for water vapor was calculated
according to von Caemmerer and Farquhar (1981). The energy
budget equation was used to calculate the temperatures of the
Arabidopsis rosettes in cuvettes of the gas-exchange device
(Parkinson, 1985).

Stomatal responsiveness to CO2 was studied in individual
leaves of the coi1-30 and myc2-1 Arabidopsis mutants attached to
intact plants. Intact leaves of plants at 4–5 weeks old were ana-
lyzed using the LI-6400 infrared gas analysis (IRGA) gas-exchange
analyzer system with a leaf chamber (LI-6400-40; LI-COR Bio-
sciences, https://www.licor.com). The clamped leaves were equili-
brated and stabilized at 150 lmol m�2 sec�1 light intensity (LED
light source), 58–65% relative humidity, 21°C, 360 µl L�1 CO2 with
an incoming air flow of 200 lmol sec�1 for 40 min. Stomatal con-
ductance was recorded for 30 min at 360 µl L�1 CO2, followed by
60 min at 800 µl L�1 CO2 and 60 min at 100 µl L�1 CO2.

Stomatal conductance in tomato plants was monitored using a
thermostated four-chamber, custom-built, flow-through gas-
exchange device (H~orak et al., 2017). The measurements were per-
formed on two or three intact top leaves of the homozygous jai1-1
mutant and the wild-type plants. The leaves were hermetically
sealed in the chambers of the device and stabilized at
394.3 � 20.4 µl L�1 CO2, 150 µmol m�2 sec�1 light, 69.0 � 9.5%
relative air humidity. Stomatal closure and opening were triggered
by 740.9 � 35.6 and 93.5 � 6.0 µl L�1 CO2, respectively.

Measurements of stomatal apertures

Leaves for stomatal aperture assays were collected from Ara-
bidopsis plants at 4–5 weeks old. From the same leaf, abaxial epi-
dermal peels for a mock and a hormonal treatment were
collected. The epidermal peels were immediately transferred
cuticle-side up into 6-cm Petri dishes filled with 10 mM 2-(N-
morpholine)-ethanesulphonic acid (MES), pH 6.15, 50 mM KCl.
The buffer was supplemented with ethanol (mock) or hormones in
various concentrations. The Petri dishes were incubated in a ther-
mostatic water bath at a temperature of 22°C with light of
150 µmol m�2 sec�1 for 3 h. Stomata in the epidermal peels were
examined with a Zeiss Axio Examiner D1 microscope with an 509
objective (Zeiss, https://www.zeiss.com). Pictures of stomata were
collected with VISIVIEW 2.0 (Visitron, https://www.visitron.de) and
processed with IMAGEJ 1.37 to measure stomatal aperture width.
For each of the samples, the average width of stomatal apertures
was calculated for the treatment and the corresponding mock,
based on an examination of 15–30 stomata.

Transcript quantification

To confirm the entry of MeJA and SA into the sprayed leaves, we
quantified transcripts that are known to be induced by these hor-
mones. Leaf samples were collected from the hormone-treated
plants: 2 h after spraying for MeJA, 4 h after spraying for SA and
2 h after spraying for ABA. DNA-free total RNA was isolated from
the samples using the Spectrum Plant Total RNA kit (Sigma-
Aldrich, https://www.sigmaaldrich.com), according to the manu-
facturer’s recommendations. cDNA was synthesized with the Rev-
ertAid Premium Reverse Transcriptase (ThermoFisher Scientific,
https://www.thermofisher.com) and was used for real-time quanti-
tative PCR (qPCR), with the conditions described before (Kaurilind
and Brosch�e, 2017). Sequences of the primers used for qPCR are
listed in Table S1. Three reference genes, TIP41, YLS8, and SAND,

were used to normalize the qPCR data in QBASE 2.0 (Biogazelle,
https://services.biogazelle.com). Guard-cell-enriched epidermal
fractions were collected according to a method described previ-
ously (Bauer et al., 2013; Jalakas et al., 2017).

Statistical analysis

All experiments were repeated at least twice with similar results.
One-way analysis of variance (ANOVA) was used to determine
whether there were any statistically significant differences
between groups in experiments. If the ANOVA models were statis-
tically significant, post hoc tests were applied to identify the sig-
nificantly different groups. Tukey’s honestly significant difference
(HSD) test was used to compare multiple groups of samples (STA-
TISTICA 7.1). Differences between wild-type plants and mutant lines
were estimated by using Dunnett’s post hoc test. Effects of hor-
mones on stomatal apertures and stomatal conductance were esti-
mated using the paired Student’s t-test (STATISTICA 7.1). All effects
were considered significant at P < 0.05. The ANOVA models, the
numbers of biological repeats as well as the results of the Stu-
dent’s t-tests and the post hoc tests are shown in Data S1.

The gas-exchange results are presented in absolute and relative
values. To characterize stomatal movements in response to
changing environmental conditions and ABA, additional parame-
ters were calculated. Changes in stomatal conductance were com-
puted as a difference between stomatal conductance values
before and at a certain time after a stimulus was applied. The ini-
tial rates of change in stomatal conductance were calculated as
linear slopes of the curve, reflecting short-time changes in stom-
atal conductance after the application of a treatment.
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Figure S1. Changes in stomatal conductance driven by various
CO2 concentrations in Arabidopsis JA- and SA-biosynthesis and -
signaling mutants.

Figure S2. Changes in stomatal conductance induced by elevated
(a) or reduced (b) CO2 concentrations in leaves of the jai1-1
tomato mutant and the corresponding wild type (Castlemart).

Figure S3. Stomatal responsiveness to a period of darkness in sin-
gle (a–d, g–j) and double (e, f, k, l) Arabidopsis mutants with dis-
turbed JA and SA biosynthesis and signaling.

Figure S4. Characterization of stomatal movements induced by
darkness and re-illumination in JA- and SA-biosynthesis and -sig-
naling mutants.

Figure S5. Reduction of stomatal conductance under elevated
vapor pressure deficit in JA- and SA-biosynthesis and -signaling
mutants.

Figure S6. Changes in stomatal conductance of JA- and SA-
biosynthesis and -signaling mutants in response to elevated vapor
pressure deficit.

Figure S7. ABA-induced reduction of stomatal conductance in JA-
and SA-biosynthesis and -signaling mutants.

Figure S8. Ozone-induced changes in stomatal conductance of
Arabidopsis plants defective in JA and SA biosynthesis and sig-
naling.

Figure S9. Plant responses to ABA, MeJA and SA sprays.

Figure S10. Changes in stomatal conductance after spraying with
coronatine (COR).

Table S1. Primers used in this work.

Data S1. ANOVA tables and results of Student’s t-tests and
post hoc tests.
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